> 数学 >
lim
n→∞
1
n2+n+1
+
2
n2+n+2
+…+
n
n2+n+n
)=______.
人气:481 ℃ 时间:2020-03-27 13:43:51
解答
当1<i<n时,有
1
n2+n+n
1
n2+n+i
1
n2+n+1

1+2+…+n
n2+n+n
n
i=1
i
n2+n+i
1+2+…+n
n2+n+1

又:
lim
n→∞
1+2+…+n
n2+n+n
=
lim
n→∞
1
2
n(n+1)
n2+n+n
=
1
2

lim
n→∞
1+2+…+n
n2+n+1
=
lim
n→∞
1
2
n(n+1)
n2+n+1
=
1
2

由夹逼准则有:
lim
n→∞
n
i=1
i
n2+n+i
=
1
2
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版