求由抛物线y2=4ax与过焦点的弦所围成的图形面积的最小值.
焦点F(a,0),焦点弦垂直于对称轴时所围面积最小.
设焦点弦直线方程:x=a,与抛物线交点:(a,2a),(a,-2a),
面积积分=∫ydx=2∫2√(ax)dx(x从0到a)= 4√a∫x^(1/2)dx(x从0到a)
= 4√a*2/3*x^(3/2) (x从0到a)
=8/3*√a* a^(3/2)
= 8/3* a^2
我没有学过定积分.我就希望大家给我解释一下面积积分的计算过程,是怎么把数据代进去,得出结果的.
人气:182 ℃ 时间:2020-03-28 12:40:22
解答
抛物线y^2=4ax
y=2√a*√x
【问】:我就希望大家给我解释一下面积积分的计算过程,是怎么把数据代进去
【答】:定积分方面有一个著名的公式,叫牛顿-莱布尼兹公式.它是定积分与
不定积分(即原函数)之间的关系式
举例来说,f(x) 的不定积分(即原函数)是 F(x)
那么从 a 到 b 的定积分就等于 F(b)-F(a)
更详细的,可以查文库和百科等
推荐
- 求由抛物线y2=4ax与过焦点的弦所围成的图形面积的最小值.
- 过抛物线y^2=2px(p>0)的焦点作互相垂直的两条弦,求以这两条弦为对角线的四边形面积的最小值
- 已知AB是抛物线y^2=2px的焦点弦,O是抛物线的顶点,若AB=a,则三角形AOB的面积是
- 求由抛物线y²=4ax与过焦点的弦所围成的图形面积
- 求由抛物线y2=4ax与过焦点的弦所围成的图形面积的最小值.
- 如图,在△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E.已知AB=10,BC=8,AC=6,求△AED的周长
- 如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( ) A.右转80° B.左转80° C.右转100° D.左转100°
- 运用辨证唯物论知识说明,中国人的航天梦想能逐步实现的原因.
猜你喜欢