>
数学
>
求由抛物线y
2
=4ax与过焦点的弦所围成的图形面积的最小值.
人气:107 ℃ 时间:2020-03-28 12:38:31
解答
由图形得知:S
ACF
>S
AGF
>S
FDE
,
∴S
ACFEOA
≥S
AFDEOA
.
焦点F(a,0),焦点弦垂直于对称轴时所围面积最小.
以x轴为对称轴,y=
4ax
=2
ax
,y≥0,
∴所围成的图形面积的最小值S=
∫
a0
2
ax
dx
=4
a
=4
a
•
2
3
•x
3
2
|
a0
=
8
3
a
2
.
推荐
求由抛物线y2=4ax与过焦点的弦所围成的图形面积的最小值.
求由抛物线y²=4ax与过焦点的弦所围成的图形面积
求由抛物线y2=4ax与过焦点的弦所围成的图形面积的最小值.
过抛物线y^2=8x的焦点f做抛物线的弦AB=32,求直线AB倾斜角的大小(x1不=x2)
关于抛物线焦点弦性质问题
caution contents
一道三角函数计算题
求函数F(X)=log4.5为底(x+1)为真数+log4.5为底4-2x为真数的定义域和值域
猜你喜欢
《六国论》中的所有词类活用
等腰三角形的一个底角是40度,这是一个什么三角形?1、锐角三角形 2、直角三角形 3、钝角三角形
what,you,call,can,tiger,little,in,english,a?连词成句
Don't get caught with egg on your face
Where()your grandmother live?完成上列疑问句.(英语)
英语翻译
“不要跟我拽英语,不然你会后悔”用英语怎么说谢谢了,
课课通·课程标准思维方法与能力训练:英语(7年级上册)(人教新目标)答案
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版