超简单题设z1=1+i,z2=-1+i,复数z1和z2在复平面内的对应点分别为A,B,O为原点
设z1=1+i,z2=-1+i,复数z1和z2在复平面内的对应点分别为A,B,O为原点,则△AOB的面积为_______
人气:254 ℃ 时间:2019-08-20 03:01:43
解答
A(1,1) B(-1,1)
所以 面积为1
推荐
- A,B分别是复数z1,z2在复平面上对应的两点,O为原点,若|Z1+Z2|=|Z1-Z2|则△AOB为
- 复平面内关于原点对称的两点对应的复数为z1,z2,且满足3z1+(z2-2)i=2z2-(1+z1)i,求z1,z2的值.
- 复平面内,Δ OAB的顶点A,B分别对应复数z1,z2,O为原点.若|z1-2|=1,z2=(1+i)z1,求Δ OAB面积的最值.
- 复数z1=3+4i,z2=-1,在复平面上对应的点分别为A、B、Q为坐标原点.
- 设非零复数Z1 Z2对应复平面上的点为Z1和Z2,且Z1 Z2满足Z1方-2Z1Z2+4Z2方=0,O为原点,判断三角形Z1OZ2形
- 已知4x^2+7x-12=4,求-12x^2-21x的值.
- 自信,自立,自强对我们的成长各有什么重要意义
- 七年级地理同步训练答案
猜你喜欢