证明三角形三边高线交于一点
人气:469 ℃ 时间:2020-05-25 05:15:05
解答
假设BE垂直AC,CD垂直AB 因为BE、CD是高 所以∠BDC=∠BEC=90° 因为∠BOD=∠COE 所以△BOD∽△COE 所以BO/CO=DO/EO 所以BO/DO=CO/EO 又因为∠BOC=∠DOE 所以△BOC∽△DOE 所以∠DEB=∠DCB 又因为∠AEB=∠ODB=90°,∠ABE=∠OBD 所以△ABE∽△OBD 所以AB/OB=BE/BD 所以AB/BE=OB/BD 所以△BDE∽△BOA 所以∠DEB =∠BAO 又因为∠DEB=∠DCB 所以∠BAO=∠DCB 因为∠DCB+∠DBC=90° 所以∠BAO+∠DBC=90° 即∠BAF+∠ABF=90° 所以∠AFB=90° 所以AF⊥BC
推荐
- 请问如何证明三角形的三条高线交于一点?
- 用解析几何方法证明三角形的三条高线交于一点.
- 用两种方法证明:三角形的三条高线交于一点
- 如何证明三角形三边上的高线交于一点
- 用坐标法证明三角形的三条高线交于一点
- 对于下列数的排列:2,3,4 3,4,5,6,7 4,5,6,7,8,9,10 ``` 写出并证明第n行所以数的和an与n的关系式
- 是天空把水映蓝了?还是水把天空映蓝了?
- 如图已知菱形ABCD的对角线AC与BD相交于点O,AE垂直平分边CD,垂足为E 求∠BCD的度数
猜你喜欢