已知a、b、c都属正实数,且abc=1,证明1/a^3(b+c)+1/b^3(a+c)+1/c^3(b+a)
人气:440 ℃ 时间:2019-08-20 18:34:38
解答
由于1/a^3(b+c)=abc/a^2(ab+bc)=1/a^2(1/b+1/c)令x=1/a,y=1/b,z=1/c,又由于abc=1,a、b、c∈R+,有xyz=1,且x、y、z∈R+,于是只需证明x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2.因为x^2/(y+z)+(y+z)/4≥x,y^2/(x+z)+(x+z)/4...
推荐
- 已知a,b,c为实数,且a+b+c=0,abc=1,求证:a,b,c三数中必有一个大于3/2.
- 已知实数a、b、c满足:a+b+c=2,abc=4
- 已知a,b,c是全不相等的正实数,求证:b+c−aa+a+c−bb+a+b−cc>3.
- 已知三个实数a、b、c满足a+b+c=0,abc=1,求证:a、b、c中至少有一个大于3/2•
- 正实数abc 证明a+b+c≥1/a+1/b+1/c,证明a+b+ c≥3/abc a+b+c≥1/a+1/b+1/c,证明a+b+ c≥3/abc
- Bruce isn't at home now.___ he is at school.
- How is your mother?Please say hello to____for me.
- 谁能更详细明白的解释一下引力弹弓原理?
猜你喜欢