已知函数f(x)=x2-2alnx,其中a为正的常数.
(1)当a=1时,求f(x)的单调递减区间;(2)试判断函数y=f(x)的零点个数;(3)设G(x)=f(x)+m,若当x?[1/e,e]时,函数G(x)的图像恒在x轴的上方,求实数m的取值范围.
人气:375 ℃ 时间:2020-02-02 20:33:26
解答
(1) f(x)=x^2-2lnx
令f’(x)=2x-2/x=(2x^2-2)/x=0==>x=1,
x∈(0,1),f’(x)0,∴f(x)在x=1时取极小值
f(x)的单调递减区间为(0,1)
(2) f(x)=x^2-2alnx,令f’(x)=2x-2a/x=(2x^2-2a)/x=0==>x=√a
f(√a)=a-2aln√a=a-alna=0==>a=e
∴a∈(0,e)时,函数y=f(x)无零点,a=e时,函数y=f(x)有1个零点,a∈(e,+∞)时,函数y=f(x)有二个零点
(3) G(x)= x^2-2alnx+m,当x∈[1/e,e]时,函数G(x)的图像恒在x轴的上方
由(2)知a∈(0,e]时,函数y=f(x)无零点或有1个零点
则m>0时,x∈[1/e,e]时,函数G(x)的图像恒在x轴的上方
推荐
- 已知函数f(x)=x2+a/x( x≠0,常数a∈R). (1)当a=2时,解不等式f(x)-f(x-1)>2x-1; (2)讨论函数f(x)的奇偶性,并说明理由.
- 已知 函数f〔x〕=〔x2+3〕/〔x-a〕〔x≠a,a为非零常数〕
- 设常数a≥0,函数f(x)=x-ln2x+2alnx-1 (1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比较g(x)的最小值与0的大小; (2)求证:f(x)在(0,+∞)上是增函数; (3)求证:当x>1时
- 已知函数f(x)=x的2次方-2alnx,其中a为正的常数.20分(1)当a=1时,求f(x)的单调递减区间;(2)试判断函数y=f(x)的零点个数;(3)设G(x)=f(x)+m,若当x属于[1/e,e]时,函数G(x)的图像恒在x轴的上
- 已知函数f(x)=x2/ax+b(a,b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.求函数f(x)的解析式.
- 小明把一个长方体纸盒剪开,根据图中数据求出这个纸盒的体积和表面积
- 合成多肽链的基本单位是什么?
- I still have no way to Escape ((Memories)).
猜你喜欢