> 数学 >
如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.
人气:191 ℃ 时间:2019-10-19 20:30:48
解答
取PD、PC中点E、F,连AE、EF、FM
则EFG为△PCD的中位线
∴EF∥CD∥AB,即EF∥AM
EF=CD/2=AB/2=AM
∴AEFM是平行四边形
∴AE∥MF
∵PA⊥平面ABCD
∴PA⊥CD
∵ABCD是矩形
∴CD⊥AD
∴CD⊥平面PAD
∴CD⊥AE
∵PA=AD,PE=DE
∴AE⊥PD
∴AE⊥平面PCD
又AE∥MF
∴MF⊥平面PCD
∴平面PMC⊥平面PCD
(省略了少量步骤,请LZ完善)你好,你答得非常好,请问我要完善什么步骤呢?我感觉步骤很齐全啊。。譬如MF∈平面PMC
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版