求证:函数y=x+1/x图像上的任意一点处的切线斜率小于1,并求出其斜率为0的切线的方程
人气:253 ℃ 时间:2019-08-19 23:17:03
解答
解由y=x+1/x
求导y′=(x+1/x)′=1-1/x²
即由1/x²>0
即-1/x²<0
即1-1/x²<1
即y′<1
即:函数y=x+1/x图像上的任意一点处的切线斜率小于1
2令y′=(x+1/x)′=1-1/x²=0
即x=1或x=-1
当x=1时y=x+1/x=1+1/1=2
即直线过点(1,2)
此时切线方程为y=2
当
当x=-1时y=x+1/x=-1+1/-1=-2
即直线过点(-1,-2)
此时切线方程为y=-2
推荐
猜你喜欢
- 弯弯的月儿小小的船,小小的船儿两头尖,我在小小的船里坐,只看见闪闪的星星蓝蓝的天.
- 描写春天的拟人句
- 369-342÷9的简便计算
- 1,-1/2,1/3,-1/4,1/5,-1/6.等等,按此规律,第2008个数是多少?如果一直排下去会合什么数接近?
- 小六数学题一道
- Paul has a pet parrot named Smarty.的另外两句同义句是什么?
- 文字求真的意思
- 英语翻译