求函数y=1/(2-x)在x=-1处的切线斜率及方程
人气:189 ℃ 时间:2019-08-20 03:38:04
解答
y'=-(2-x)'/(2-x)^2=1/(x-2)^2
切线斜率为:f'(-1)=1/(-1-2)^2=1/9
f(-1)=1/(2-(-1))=1/3
(y-1/3)/(x-(-1))=1/3
切线方程为:y=1/3 x+2/3
推荐
猜你喜欢
- 1.在平行四边形ABCD中,角A:角B:角C:角D的值可以是A ,1比2比3比4 B ,1比2比2比1 C ,2比2比1比1 C 2比3
- 减数分裂时的交叉互换为基因突变对吗?为什么不是基因重组
- 舒婷的致橡树主要句子
- 第一个因数相同,第二个因数不同的分数乘法,如何判断积的大小?
- 英语翻译
- 叙述对二元函数而言,可微、偏导、连续之间的关系.
- none,all的用法
- cosx=1/7,cos(x-y)=13/14,0<y<x<π/2.求y