>
数学
>
平行四边形ABCD中,∠DAB=60°,Ab=2,AD=4.将△CBD沿BD折起到△EBD的位置,使面EBD⊥面ABD.
求三棱锥E-ABD的体积
人气:440 ℃ 时间:2019-08-23 10:34:37
解答
三棱锥VE-ABD=(S三角形ABDX高)/3
SIN60°=二分之根号三
S三角形ABD的高=2X根号三
因为 平行四边形的对角三角形边长比为1:2且已知夹角为60°,
根据三角函数,三角型cbd中cd垂直于bd.
又已知面bcd垂直于面abd.所以cd垂直于面ABD,即CD为三棱锥的高
带入数据得 Ve-abd=三分之四倍的根号三
推荐
平四ABCD中,∠DAB=60°,AB=2,AD=4.将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.求证AB⊥DE.
平行四边形ABCD中,角DAB=60度,AB=2,AD=4,将三角形CBD沿BD折起到三角形EBD的位置.使平面EBD垂直平面ABD
AA平行四边形ABCD中,角DAB=60度,AB=2,AD=4,将三角形CBD沿BD折起到三角形EBD的位置,使平面EDB垂直于平
如图,在平行四边形ABCD中,角DAB=60°
四棱锥P-ABCD中,底面ABCD为平行四边形,角DAB=60度,AB=2AD ,PD垂直底面ABCD.(1)证明PA垂直BD;(2)若P...
加上适当的关联词,把两句话合成一句话
《庄子 知北游》所说的“澡雪而精神”是什么意思?
和谐 仁慈 善良造句
猜你喜欢
What does your families usually do for the weekend?Do you enjoy it?Why?
鸡兔同笼,共有12个头,40个脚,那么鸡有多少只?兔有多少只?
迄今为止,你所见到的最大的影子是什么黑夜,它是地球的影子
酚类物质和醇类物质在分子结构上有什么不同?
已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x²,那么函数y=f(x)的图像与y=|lgx|的图像交点有几个
烟雾烟草中对人体危害最大的致命物质是什么
一个锐角的一半与这个锐角的余角及这个锐角的补角的和等于平角,则这个锐角的度数为_°.
有一块三角形空地,园林工人想把它分成三个面积相等的三角形种植不同的花草.
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版