> 数学 >
已知向量组a1,a2,a3线性无关,证明向量组a1+a2,3a2+2a3,a1-2a2+a3线性无关.
人气:426 ℃ 时间:2020-01-29 05:49:47
解答
用定义设k1(a1+a2)+k2(3a2+2a3)+k3(a1-2a2+a3)=0重新分组:a1(k1+k3) + a2(k1+3k2-2k3) + a3(2k2+k3)=0因为a1,a2,a3线性无关,所以有方程组:k1+k3=0; k1+3k2-2k3=0; 2k2+k3=0.行列式:1 0 1 1 3 -20 2 1 不等...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版