已知向量组a1,a2,a3,线性无关,证明:向量组a1+a2,a2+a3,a3+a1,线性无关
人气:294 ℃ 时间:2019-11-01 06:50:41
解答
假设:a1+a2、a2+a3、a3+a1是线性相关的,则:
a3+a1=m(a1+a2)+n(a2+a3)
(m-1)a1+(m+n)a2+(n-1)a3=0
因a1、a2、a3线性无关,则:
m-1=0且m+n=0且n-1=0
但这个方程组无解,从而有:
a1+a2、a2+a3、a3+a1是线性无关的.
推荐
- 已知向量组a1,a2,a3线性无关,证明向量组a1+a2,3a2+2a3,a1-2a2+a3线性无关.
- 设向量组a1,a2,a3线性无关.证明向量组a1+a3,a2+a3,a3也与线性无关.
- 设向量组a1,a2,a3,线性无关.证明:向量组a1+a2+a3,a2+a3,a3也线性无关
- 若向量组a1,a2,a3,a4线性无关,判断a1+a2,a2+a3,a3+a4,a4+a1线性相关性并证明.
- 已知向量组a1,a2,…,ar线性无关,证明向量组 b1=a1,b2=a1+a2,…,br=a1+a2+…+ar也线性无关.
- 矩形的判定定理?快
- 狭义马克思主义理论是什么
- 为什么蜡融化了就变透明了
猜你喜欢