数列{an}的前n项和Sn=[3n(41-n)]/2 求数列{an的绝对值}的前30项的和
人气:173 ℃ 时间:2019-09-05 07:26:52
解答
an = Sn - S(n-1) = [3n(41-n)]/2 - [3(n-1)(41-n+1)]/2 = 63 -3n
an 为等差数列.
63-3n ≥ 0 ,n≤21
前21项都为正,和为,a1= 63-3 =60,a21 = 0,S21 =(60+0)*21/2 = 630
从第22 项开始,an为负,an的绝对值变为 3n-63
首项a22 = 66-63=3,a30=3*30-63= 27,S22_30 = (3+27)*8/2=120
前30项和=630+120=750
推荐
猜你喜欢
- 清朝九门提督相当于现在的什么官职?
- Japan is _the east of China.A,to B,on ,in选择?为什么?
- 一个数的小数点先向左移动一位,又向右移动了三位后,所得到的数比原数大495,原来这个数是多少?
- There isn't so much pollution in the coiuntry () in big cities
- The story is ___ interesting that many children enjoy it.
- 补充成语;()()不论
- 我们的生活水平不断改善这句话有什么毛病
- 工地上运到一批水泥,第一次搬了30袋,第二次搬了50袋,还剩下这批水泥的七分之三没搬,这批水泥共有多少袋