n |
a1+2a2+3a3+…+nan |
2 |
n+2 |
∴a1+2a2+3a3+…+nan=
n(n+2) |
2 |
∴a1+2a2+3a3+…+(n-1)an-1=
(n-1)(n+1) |
2 |
两式相减,得nan=
n(n+2)-(n-1)(n+1) |
2 |
∴an=
2n+1 |
2n |
1 |
2n |
故选:A.
n |
a1+2a2+3a3+…+nan |
2 |
n+2 |
1 |
2n |
1 |
n |
1 |
2 |
1 |
2 |
n |
a1+2a2+3a3+…+nan |
2 |
n+2 |
n(n+2) |
2 |
(n-1)(n+1) |
2 |
n(n+2)-(n-1)(n+1) |
2 |
2n+1 |
2n |
1 |
2n |