设{an}是正项数列,其前n项和Sn满足:Sn=1/2(an+1/an),求证{Sn的平方}为等差数列、、{an}的通项公式
人气:281 ℃ 时间:2020-01-29 22:10:12
解答
由Sn=1/2(an+1/an)
得:S1=a1=1/2(a1+1/a1)
2a1=a1+1/a1
a1=1/a1
(a1)*(a1)=1
a1=1({an}是正项数列) S1=a1=1
S2=a1+a2=1/2(a2+1/a2)
将a1=1代入得
a2等于根号2-1;S2等于根号2;
同理a3等于根号3-根号2;S3等于根号3;
可见Sn的平方为等差数列.以下用完全归纳法证明.
即:Sn的平方是等差数列.且公差是1.
推荐
猜你喜欢
- 已知(4x+3y-1)2平方+|3-y|=0求xy和x+y的值.
- 过点P(cosa,sina) (-π/2〈a〈0),且以OP(O为平面直角坐标系的原点)为法向
- 一个数的二分之一比这个数的 25%多75,求这个数
- 二项式定理C括号里的数字怎么算,如C(50,0),C(50,1),C(50,2).
- 沿一面墙用篱笆围一个羊圈长45米,宽23米,这个羊圈占地面积多少
- “善学者,假人之长以补其短.
- 复数(1-i)2的虚部为_.
- 把l y s l w o 组成一个单词