证明:对任意实对称矩阵A,总存在充分大的实数t,使{tI(I为单位矩阵)+A}是正定矩阵.
人气:248 ℃ 时间:2020-01-27 16:26:20
解答
设A的特征值为λ1,λ2,...,λn,则tE+A的特征值为t+λ1,t+λ2,...,t+λn,显然,无论λi为多少.总存在足够大的t使t+λi>0,即tE+A为正定矩阵.
推荐
- 设A为实对称矩阵,t为实数,证明:当t充分大时,矩阵tE+A为正定矩阵
- 设A,B为正定矩阵,证明A+B为正定矩阵.
- 设A是实对称矩阵,证明只要实数t足够大,tE+A一定是正定矩阵
- 设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵
- A、B均为n阶实对称矩阵,其中A正定,证明:当实数t取的充分大以后tA+B亦正定.
- 已知二分之一,3,4这三个数,再添上一个数可以组成一个比例,这个数可以是()
- A={0,a}B={x|x∈A} A与B什么关系
- 用描述法表示大于9的所有实数组成的集合为
猜你喜欢