设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵
人气:138 ℃ 时间:2019-10-23 07:34:31
解答
(1) 设λ是A在复数域内的一个特征值,X是属于λ的特征向量(未必是实向量),即有AX = λX.用B*表示B的复共轭的转置,由A是实对称矩阵,有A* = A.考虑1×1矩阵X*AX,可知(X*AX)* = X*A*(X*)* = X*AX,即X*AX唯一的矩阵元是实...
推荐
- 设A为实对称矩阵,t为实数,证明:当t充分大时,矩阵tE+A为正定矩阵
- 证明 若A为n阶正定矩阵,则A的所有特征值均为正.
- 证明半正定矩阵特征值非负
- 设A是实对称矩阵,证明只要实数t足够大,tE+A一定是正定矩阵
- 高等代数题求解 设A ,B为n级半正定矩阵,证明AB的特征值全是非负实数.
- 轴根据什么不同可以分为心轴,转轴,传动轴?
- 已知x>0,y>0,z>0,求证:根号(x^2+xy+y^2)+根号(x^2+xz+z^2)+根号(y^2+yz+z^2)>3/2(x+y+z)
- 材料一体现了孙中山的什么思想
猜你喜欢
- 小麦联合收割机价格
- 写出修辞手法:兔死狐悲,军令如山,对答如流,鬼使神差,固若金汤
- 所以的细菌都有 ( ) ( ) ( ),这三种结构.
- 开门看见老王直僵僵地镶嵌在门框里一句用了什么修辞手法,强调了什么
- 求满足条件{x|x^2+1=o}为M的真子集,M为{x|x^2-1=0}的子集,求集合M的个数
- He didn't serve as the CEO of that company until this August.他任那家公司的CEO直至今年八月.
- 连词成句:1.an,old,to,the,street,usually,cross,man,takes,Sally
- x的平方+2x=15(这方程咱解)