椭圆x^2/25+y^2/16=1的中心作直线与椭圆交于A,B两点,F1为椭圆的焦点,则三角形F1AB面积的最大值为
人气:365 ℃ 时间:2019-08-21 19:43:08
解答
x^2/25+y^2/16=1
a=5,b=4,c=3
F1(-3,0)
则三角形F1AB面积=(1/2)*|FO|*|yA-yB|=(3/2)*|yA-yB|
∴ S≤(3/2)(|yA|+|yB|)≤(3/2)*(2*b)=3b=12
即三角形F1AB面积的最大值为12
推荐
- 若AB过椭圆 x225+y216=1中心的弦,F1为椭圆的焦点,则△F1AB面积的最大值为( ) A.6 B.12 C.24 D.48
- f1,f2是椭圆x^2/2+y^2=1的两个焦点,过f2作倾斜角为45度的直线AB于椭圆交于A,B两点,三角形f1AB的面积多少
- 设点F1是x^2/3+y^2/2=1的左焦点,弦AB过椭圆的右焦点,求三角形F1AB的面积的最大值.记住是求最大值!
- F1,F2是椭圆x^2/2+y^2=1的两个焦点,过F2作倾斜角为45度的弦AB,则三角形F1AB的面积为多少?
- 已知椭圆X^2/45+y^2/20=1的焦点分别是F1、F2,过中心O作直线与椭圆相交于A、B两点,若要使三角形ABF1的面积?
- 为什么都说鞭炮污染严重,会产生大量有毒气体,会造成空气污染,再者说,只有过年和
- 求一篇关于网络的危害的英语作文 假如你是李平 你的笔友王强沉迷电脑游戏严重身心健康
- 靠墙边围成一个花坛,围花坛的篱笆长46米,求这个花坛的面积.
猜你喜欢