>
数学
>
请解释高数定积分证明1、若f(x)在〔-a,a〕上连续且为偶函数,则 ∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
求证1、若f(x)在〔-a,a〕上连续且为偶函数,则∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
2、若f(x)在〔-a,a〕上连续且为奇函数,则∫(上a下-a)f(x)dx=0
证明:因为∫(上a下-a)f(x)dx=∫(上0下-a)f(x)dx+∫(上a下0)f(x)dx
对积分∫(上0下-a)f(x)dx做代换x=-t得
∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt=∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx
于是∫(上a下-a)f(x)dx=∫(上a下0)f(-x)dx+∫(上a下0)f(x)dx
=∫(上a下0)〔f(x)+f(-x)〕dx
(1)若f(x)为偶函数,即f(-x)=f(x),则f(x)+f(-x)=2f(x)
从而∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
(2)(1)若f(x)为奇函数,即f(-x)=-f(x),则f(x)+f(-x)=0
从而∫(上a下-a)f(x)dx=0
请问:其中关键的一步
对积分∫(上0下-a)f(x)dx做代换x=-t得
∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt=∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx
看不懂,感觉根本不相等,特别是∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt和
∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx是怎么等出来的?
人气:491 ℃ 时间:2019-08-19 16:12:46
解答
不知道图片是否清晰,因为我不会直接打出公式来,就用数学编辑器先编完用QQ截的图.呵呵~
推荐
请解释高数定积分证明1、若f(x)在〔-a,a〕上连续且为偶函数,则 ∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
高数定积分设f(x)=1/(1+x),x≥0 f(x)=1/(1+e^x),x≤0 求积分f(x-1)dx 上限2 下限0
高数定积分,设f(x)=lnx-∫1→e f(x)dx,证明:∫1→e f(x)dx=1/e
高数证明f(t)=∫(0→π)ln(t²+2tcosx+1)dx为偶函数
It's none of my business.just get out of my face
1.——don't you remember what we have agreed on?we agreed to be here before 6 o'clock
People ___ ___tea to Europe until the sixteenth century.
猜你喜欢
湖南衡阳阶梯电价都是怎么算电费的?
飞离地球,遨游太空是中华民族很久以来的梦想.(缩句)
3、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄相乘之积是360,其中年龄最大的是( )岁.
小燕上学时骑车,回家时步行,路上共用50分钟.如果往返都步行,全程需要70分钟.她往返都骑车需要_分钟.
Additionai material什么意思?
关于广东平行志愿第一组的ABC三个院校问题
(l,a,c,k,b)能组成什么单词
怎样辨别电动车电池好坏?
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版