>
数学
>
请解释高数定积分证明1、若f(x)在〔-a,a〕上连续且为偶函数,则 ∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
求证1、若f(x)在〔-a,a〕上连续且为偶函数,则∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
2、若f(x)在〔-a,a〕上连续且为奇函数,则∫(上a下-a)f(x)dx=0
证明:因为∫(上a下-a)f(x)dx=∫(上0下-a)f(x)dx+∫(上a下0)f(x)dx
对积分∫(上0下-a)f(x)dx做代换x=-t得
∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt=∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx
于是∫(上a下-a)f(x)dx=∫(上a下0)f(-x)dx+∫(上a下0)f(x)dx
=∫(上a下0)〔f(x)+f(-x)〕dx
(1)若f(x)为偶函数,即f(-x)=f(x),则f(x)+f(-x)=2f(x)
从而∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
(2)(1)若f(x)为奇函数,即f(-x)=-f(x),则f(x)+f(-x)=0
从而∫(上a下-a)f(x)dx=0
请问:其中关键的一步
对积分∫(上0下-a)f(x)dx做代换x=-t得
∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt=∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx
看不懂,感觉根本不相等,特别是∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt和
∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx是怎么等出来的?
人气:389 ℃ 时间:2019-08-19 16:12:46
解答
不知道图片是否清晰,因为我不会直接打出公式来,就用数学编辑器先编完用QQ截的图.呵呵~
推荐
请解释高数定积分证明1、若f(x)在〔-a,a〕上连续且为偶函数,则 ∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
高数定积分设f(x)=1/(1+x),x≥0 f(x)=1/(1+e^x),x≤0 求积分f(x-1)dx 上限2 下限0
高数定积分,设f(x)=lnx-∫1→e f(x)dx,证明:∫1→e f(x)dx=1/e
高数证明f(t)=∫(0→π)ln(t²+2tcosx+1)dx为偶函数
1根长方体木料,底面是1个边长8厘米的正方形,长5米,这跟木料的体积是【 】,表面积是【 】
BE BECOME BEGING CARRY ARGUE EAT ESCAPE BURN 的现在分词形式
biconstituent
猜你喜欢
用一句英语写对友谊的理解,可以用文章中的话
用因式分解法解方程(要过程)
i meant i am bored这句话对吗
如果方程x-2/5=2-x+3/2的解也是7x-5=lm-1l的解,那么m的值为_____
描写花的拟人句
蒙古包的下面是圆柱形,上面是圆锥形.圆柱的底面直径是6米,高2米;圆锥的高是1米,蒙古包所占的空间大约是多
猜生肖::尖牙利爪的动物是什么?
函数y=根号(x^2-x) 的定义域
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版