> 数学 >
高数定积分,设f(x)=lnx-∫1→e f(x)dx,证明:∫1→e f(x)dx=1/e
不懂得就不要来瞎搅合了,浪费自己的时间
人气:228 ℃ 时间:2019-08-19 16:41:43
解答
设,f(x)的一个原函数为:F(x)=(xlnx-x)-x*∫1→e f(x)dx
那么:∫1→e f(x)dx = F(e)-F(1)=( 1-e)∫1→e f(x)dx+1 (自己化简)
从而∫1→e f(x)dx=1/e
此题考察定积分是个确定的值 即∫1→e f(x)dx 是个确定的值
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版