∵菱形ABCD,
∴AC⊥BD,AD=AB=BC=CD,
∵AE=AF,
由勾股定理得:DF=BE,
∴CF=CE,
∴EF∥BD,
∴AC⊥EF,
∵AE=AF,
∴EH=HF=3,
根据勾股定理得:AH=4,
∵△AEH∽△AEC,
∴
AH |
AE |
AE |
AC |
∴
4 |
5 |
5 |
AC |
∴AC=
25 |
4 |
同理EC=
15 |
4 |
HC=AC-AH=2.25=
9 |
4 |
AC交BD与G点,
∵菱形ABCD,
∴∠ACB=∠ACD,
∵∠EHC=∠BGC=90°,△BCG∽△ECH,
CG=
1 |
2 |
∴BC=
GC |
HC |
| ||
|
15 |
4 |
125 |
24 |
故答案为:
125 |
24 |