已知圆A的圆心(根号2,0)半径为1,双曲线的两条渐近线都过原点且与圆A相切,
已知双曲线C的一个顶点为P(0,√2),
它的两条渐近线经过原点,
并且都与圆(x-√2)2+y^2=1相切
(1)求双曲线C的方程
(2)过M(0,2√2)做倾斜角为a的直线交双曲线于A B
两点且a[0,π/4)
求三角形 APB的面积的最小值及取得最小值时a的值
第一问我会做,第二问就不会了
人气:207 ℃ 时间:2019-12-12 10:15:47
解答
设AB方程为y=tanax+2√2
将其代入双曲线方程可得到关于x的一元二次方程,其中x的解即为A与B的横坐标,设为x1,x2
则可得x1+x2和x1x2,它们都是含tana的量,三角形的面积可表示成S=√2*|x1-x2|/2
|x1-x2|=√[(x1+x2)^2-41x2] 可得到关于tana的一个量,当该值取最小值时,S最小,该值含根式,看根号内部,内部可看做二次函数,最值你就会了,由于很多式子不好打出来,就只好说个大概了你写一下拍一下嘛我也想拍,但是手机不到二百块钱,拍出来什么都看不见设AB方程为y=tanax+2√2将其代入双曲线方程并化简,得(tan^2a-1)x^2+4√2tanax+6=0设A横坐标是x1,B横坐标是x2则x1+x2=4√2tanax/(1-tan^2a) x1x2=6/(tan^2a-1)由题意知S=√2*|x1-x2|/2=√2/2*√[(x1+x2)^2-4x1x2]=√2/2*√[32tan^2a/(tan^2a-1)^2-24/(tan^2a-1)] =2√[(tan^2a+3)/(tana^2-1)^2]=2√[4/(tan^2a-1)^2+1/(tan^2a-1)]令b=1/(tan^2a-1)则b∈(-∞,-1] S=2√(4b^2+b)=2√[4(b+1/8)^2-1/16]故当b=-1,即a=0时,S(min)=2√3
推荐
- 已知圆A的圆心(根号2,0)半径为1,双曲线的两条渐近线都过原点且与圆A相切,双曲线的顶点A‘与A关于Y=X对
- 设双曲线的中心在原点 焦点在X轴上 实轴长为2 他的两条渐近线与以(0.1)为圆心,2分之根号2为半径的园相切,
- 已知双曲线C的一个顶点为A(0 ,根号2) 它的两条渐近线经过原点,并且与圆M:(X-2)2+Y2=1相切.
- 已知双曲线C的一个顶点为A(0 ,根号2) 它的两条渐近线经过原点,并且与圆M:(X-2)²+Y²=1相切.(1)求双曲线C的方程(2)在双曲线上支上求一点P,使点P到已知直线L:Y=X-根号2的距离等于根号2
- 已知双曲线C的中心是原点,右焦点F(根号3,0),一条渐近线m:x+根号2y=0,设过点A(-3根号2,0)的直线l的方向向量
- V.Complete the dialogue.补全对话.(10分)答案写在后面横线上.
- 一个没有盖的圆柱形铁皮水桶,高是12米,底面直径是高的四分之三.做这个水桶大约用铁皮多少平方分米?(用进一法取近似数值,得数保留整十数平方分米.)
- 1.已知三角形ABC中,AB,BC,CA,边上的中点分别为F(3,-2),D(5,4),E(-1,-8),求BC边上中线AD的长.
猜你喜欢
- 某人站在高楼的平台边缘,
- 7.已知整型变量a=3,b=4,c=5,写出逻辑表达式a
- 若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有( ) A.7个 B.8个 C.9个 D.10个
- 把一根长1米的长方体材料平均截成4段后,表面积增加了36平方厘米,原来这根木料的体积是多少?
- 虎,牛,完,元.多一笔或少一笔是什么字?
- 为什么摇晃瓶子后,里面的液体会产生气泡?
- 天上的街市属于联想的句子有?