平面上有两点A(-1,0),B(1,0),点P在圆(x-3)2+(y-4)2=4上,求使AP2
平面上有两点A(-1,0),B(1,0),点P在圆(x-3)2+(y-4)2=4上,求使AP2+BP2取最小值时点P的坐标.
圆的方程是(x-3)的平方加(y-4)的平方等于4【2是平方】
所求的也是AP的平方加BP的平方
人气:421 ℃ 时间:2020-04-12 08:47:08
解答
设P点坐标为(m,n),那么AP²+BP²=(m+1)²+y²+(m-1)²+y²=2(m²+n²)+2要使得AP²+BP²有最小值,那么m²+n²有最小值.m²+n²为P点到坐标原点(0...
推荐
- 平面上有两点A(-1,0),B(1,0),点P在圆周(x-3)2+(y-4)2=4上,求使AP2+BP2取最小值时P的坐标
- 如图平面上有A(1,0),B(-1,0)两点,已知圆的方程为(x-3)^2+(y-4)^2=2^2.
- 如图平面上有A(1,0),B(-1,0)两点,已知圆的方程为(x-3)^2+(y-4)^2=4
- 已知平面区域x≥0y≥0x+2y−4≤0恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为_.
- 平面上两点A(-2,0),B(2,0),在圆C(x-1)^2+(y+1)=4上去一点P,求使|AP|^2+|BP|^2取得最小值时点P
- 读了《桃花心木》联系实际,有哪些“不确定”?
- 含有“比喻”修辞手法的句子
- 99*2.37+2.37简便做法
猜你喜欢
- 在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由B点(起点)向A点(终点)移动,设P移动的距离为X,三角形ABP的面积为S
- sole和only在作形容词时,都可以表示“唯一的”,请问有什么区别么?
- 请写一个系数为-2,且只含有a,b,c的四次单项式
- What would you do if you went to a strange country and have serious culture shock?"
- 英语翻译
- 用浓磷酸和环己醇制备环己烯,没做出产品,分析下可能的原因
- 巧栽树:小树苗,我来栽,栽五排;每排都在四棵,怎样才能栽出来
- 在同一平面内有2011条直线a1,a2,a3...,a2011,a1⊥a2,a2//a3,a3⊥a4,a4//a5,那么a1与a100的位置关系该如何