设f(x)有连续的二阶导数,且f(0)=0,f'(0)=1,f'''(0)=-2,则lim(f(x)-x)/x^2=?如何解答,请给个详细解答过程?
x趋于0时,则lim(f(x)-x)/x^2=
人气:235 ℃ 时间:2019-08-21 06:47:01
解答
你的题目中怎么是三阶导数啊,是不是多了一个啊,应该是f''(0)=-2吧题目已经说了有连续的二阶导数,且原极限显然是0/0型的极限,那么根据洛比塔法则有lim(f(x)-x)/x^2 = lim[(f'(x)-1)/2x]一次求导后,仍然是0/0型极限,继...
推荐
- 若函数f(x)在点x=a处的导数为A,则lim(Δx→0)[f(a+Δx)-f(a-Δx)]/2Δx=?
- 函数f(x)有连续二阶导数,且f(0)=0,f'(0)=1,f''(0)=-2,则(x→0)lim(f(x)-x)/x2=?
- 设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
- 设f(x)有二阶导数,在x=0的某去心邻域内f(x)≠0,且lim f(x)/x=0,f'(0)=4,求lim (1+f(x)/x)^(1/x)
- 设f(x)在[0,+∞)上有连续的一阶导数,且lim(x→∞)f'(x)=a,证lim(x→∞)f(x)=∞
- ‘‘怿’’这个字常用吗?有什么特殊含义没?
- 已知3.1克磷在空气中完全燃烧掉,生成五氧化二磷多少克?消耗标准状况下的空气多少升?
- 下面的式子,那个不是方程?
猜你喜欢