A^2-3A+4E=0,证明:A+E可逆并求其逆矩阵
急求啊啊啊啊啊啊
人气:425 ℃ 时间:2019-11-19 07:09:05
解答
因为A^2-3A+4E=(A+E)(A-4E)+8E=0
所以(A+E)(A-4E)=-8E
所以(A+E)[(-1/8)(A-4E)]=E
因为|A+E||A-4E|=|-8E|≠0
所以|A+E|≠0
所以A+E可逆,且(A+E)^(-1)=(-1/8)(A-4E)
推荐
- 设方阵A满足A^2-3A-10E=0,证明:A与A-4E是可逆矩阵,并求A与(A-4E)的逆矩阵
- 设矩阵A满足A^2-3A+2E=0,证明A+4E为可逆阵,并求其逆矩阵,设n为正整数,那么A+nE为可逆矩阵么?
- 若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵
- A方-3A-10E=0证明A和A-4E可逆
- 若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩阵,并求A^(-1)
- 几辆车运货,如果每车装3.5t,那这批货就有2t不能运走;如果每辆车装4t货,那么装完后,还可装1t其他货物
- 个性签名 静守己心,看淡浮华,心若沉浮,浅笑安然.啥意思?
- y=√x-2+√2-x的差+3,求y的x次方的平方根
猜你喜欢