> 数学 >
设方阵A满足A^2-3A-10E=0,证明:A与A-4E是可逆矩阵,并求A与(A-4E)的逆矩阵
人气:295 ℃ 时间:2019-10-14 03:25:21
解答
这样先证A-4E是可逆矩阵
因为A^2-3A-10E=0
可以化为
(A+E)(A-4E)=6E
所以A-4E是可逆矩阵
且(A-4E)^(-1)=1/6*(A+E)
再证A是可逆矩阵
化简A^2-3A-10E=0
得A(A-3E)=10E
所以A是可逆矩阵
且A^(-1)=1/10*(A-3E)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版