>
数学
>
设a>0,函数
f(x)=
alnx
x
(1)讨论f(x)的单调性
(2)求f(x)在区间[a,2a]上的最小值.
人气:434 ℃ 时间:2019-10-24 02:30:00
解答
(1)∵函数f(x)=alnxx(x>0),∴f′(x)=a(1−lnx)x2∵a>0,所以判断1-lnx的符号,当0<x<e时,f′(x)>0,为增函数,当x>e时,f′(x)<0,为减函数,∴x=e为f(x)的极大值,∴f(x)在(0,e)上单调...
推荐
设a>0,函数f(x)=alnx/x (1)讨论f(x)的单调性 (2)求f(x)在区间[a,2a]上的最小值.
已知函数f[x]=x²减[2a+1]x+alnx 当a=1时函数f[x]的单调增区间 求函数f[x]在区间[1,e]上的最小值
设a>0,函数y=(alnx)/x,求y在区间[a,2a]上的最小值.
若函数f(x)=logax在区间[a,2a]上的最大值是最小值的3倍,则a等于_.
已知函数f(x)=2/x+alnx,a属于R 求函数在区间(0,e]上的最小值.
Have a good night.与Have a good evening.
为了了解某校九年级500名学生的视力情况,从中随机抽测了若干名学生的实力作为样本进行数据处理,并绘制了如图所示的的频数分布直方图.已知学生的视力大于4.0而小于5.4(均有两个有效数字),途中从左到右五个小长方形的高的比为1:2:3:5:1
解方程:100X=200/3X+200/3
猜你喜欢
两个随机变量同分布究竟指的是什么?
诗经里有哪些描写爱情的诗句
你的好朋友露西生病了,今天没来上学,于是你打电话问候她.请用英语设计电话内容,要求不少于5句话
做平抛运动的物体,在第n秒内、第(n+1)秒内相等的物理量是(不计空气阻力,设物体未落地)( ) A.竖直位移 B.竖直位移的增量 C.速度的增量 D.平均速度的增量
线圈L在匀强电场中绕轴OO'转动时,线圈L里是否有感应电流?为什么?(答案说因为在旋转过程中穿过它的...
|3X+2Y|+2X-3Y+13的平方根=0,求X的平方-4xy+4y的平方的平方根,
1吨重的杉木木等于多少立方米
门上的猫眼
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版