已知椭圆T的中心在原点,焦点在X轴上,离心率为√3/2,且过抛物线C:x²=4y的焦点F,求椭圆T的方程
人气:429 ℃ 时间:2019-10-19 20:34:27
解答
抛物线x²=4y的焦点F(0,1);
故椭圆短半轴b=1;
e²=c²/a²=(a²-1)/a²=3/4,故a²=4;
于是得椭圆T方程为x²/4+y²=1
推荐
- 已知中心在坐标原点,焦点F1、F2在x轴上的椭圆C离心率为(√3)/2,抛物线x^2=4y的焦点是椭圆的一个顶点.
- 已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3/2,抛物线X^2=4y的焦点是椭圆C的一个顶点 (
- 已知中心在原点 焦点在X轴的椭圆离心率为2分之根号2是经过抛物线X2=4Y的焦点
- 已知中心在原点,焦点在x轴上的椭圆离心率是e=e=√2/2,经过抛物线x^2=4y的焦点.
- 已知对称中心为坐标原点的椭圆C1与抛物线C2:x^2=4y有一个相同的焦点F1,直...
- 已知双曲线x2/a2-y2/b2=1(a>0,b>0)与抛物线y2=8x有一个公共的焦点F,且两双曲线的一个交点为P,若|PF|=5则双曲线渐近线方程是?
- 若tan(π+x)=2,求: (1)4sinx−2cosx5cosx+3sinx; (2)sinxcosx/1+cos2x.
- 设a等于2013分之一的2013次方乘负2013的2014次方,b等于负10的九次方乘负13的10次方乘负130分之一的九次方,求(a-b)的值,并用科学计数法表示结果
猜你喜欢