数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.
1,数列an是等差数列,
(1)若an=2n-1,求A,B,C的值.
(2)若C=0,a1=1,bn=1/an*an+1,P=∑(1+bn) (∑上面是2013,下面是i=1)
2,若A=-1/2,B=-3/2,C=1,设Cn=an+n
(1)求证:数列cn为等比数列.
(2)求数列nCn的前n项和Tn.
人气:430 ℃ 时间:2020-02-03 22:16:38
解答
1.(1).若an=2n-1,则Sn=n^2,所以2n-1+n^2=An^2+Bn+C,对比系数,A=1,B=2,C=-1;
(2)若C=0,a1=1,设an=1+(n-1)d=nd-d+1.所以Sn=n+n(n-1)d/2,所以,Sn+an=(d/2+1)n+d/2n^2-d+1,因为C=0,所以d=1,所以an=n,所以bn=1/an*(an+1),所以P=(1+1+1+.+1)+(1-1/2+1/2-1/3+.-1/2014)=2013+2013/2014=4096195/2014;
2.(1)因为an+Sn=An^2+Bn+C .1
所以a(n-1)+S(n-1)=A(n-1)^2+B(n-1)+C.2 『小括号里是下标』
1式减2式,得
2an=a(n-1)-n-1
两边加上2n,得2(an+n)=a(n-1)+n-1
即2Cn=C(n-1)
所以是公比为1/2的等比数列;
(2)求a1
a1=S1
所以2a1=-1,a1=-1/2
所以an=-1/2*(1/2)^(n-1)
所以Tn=-1/2*(1+2*1/2+3*(1/2)^2+4*(1/2)^3+.+n*(1/2)^(n-1))
1/2Tn=-1/2*(1*1/2+2*(1/2)^2+3*(1/2)^3+4*(1/2)^4+.+n*(1/2)^n)
上式减下式,得
1/2Tn=-1/2*(1+1/2+(1/2)^2+.+(1/2)^(n-1)-n*(1/2)^n)=-1/2*(2-(1/2)^(n-1)-n*(1/2)^n)
乘上2,得Tn=2-(2+n)*(1/2)^n OK
推荐
- 数列an中sn=3n^2+5n在数列bn中,b1=8,64bn+1-bn=0常数c,使对任意的正整数n,an+logcbn值为m,求c和m
- 数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数都成立.若数列{an}为等差数列
- 数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.若数列{an}为等差数列,求证:3A-B+C=0.
- 数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数n都成立.(1)若数列{an}为等差数列,求证:3A-B+C=0; (2)若A=-1/2,B=-3/2,C=1,设bn=an+n,数列{nbn
- 在数列{an}中,an=2n+3,前n项和Sn=an2+bn+c,n∈N*,其中a,b,c为常数,则a-b+c=( ) A.-3 B.-4 C.-5 D.-6
- 想着暑假预习高一的新课,请问高一有哪些课本,分别是什么版本的?顺便补充一问:选修和必修是肿么一回事?=
- they do homework at seven o'clock every day怎么变一般疑问句?
- 歧化反应原理,从得失电子方面解释一下,
猜你喜欢
- 在2-【2(x+y)-()】=x+2,括号内应填
- 在暗室里用红光照射一幅绚丽多彩的油画作品,将会看到什么现象?为什么?
- 墨守成规象征哪个人物
- 将一个末尾数字不小于零的正整数的末尾数字去掉后,所得的新数是原数的约数,则这种性质的正整数当中,
- 1,2,3,4,5这5个数字可以组成许多个没有重复的四位数,将他们从小到大排列起来,4123是第几个数?
- chuck wall
- 如图所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相连,C为切点,圆弧轨道的半径为R,斜面的倾角为θ.现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复
- 替凡卡的爷爷写一封信给凡卡