设函数y=f(x)是定义域在R^+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1,求f(1)的值
如果f(x)+f(2-x)<2,求x的取值范围
人气:419 ℃ 时间:2019-08-22 11:31:41
解答
f(xy)=f(x)+f(y),f(1*1) = f(1)+f(1)=2f(1) =>f(1)=0
f(x)+f(2-x)f(x(2-x)) 1/3 * 1/3 = 1/9
2x-x^2 >1/9
x^2 -2x +1/90
所有这些不等式的交集就是答案
推荐
- 设f(x)是定义域在(0,正无穷大)上的减函数,满足f(xy)=f(x)+f(y),f(3)=-1,求f(1),f(9)
- 设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1
- 已知函数f(X)定义域(0,正无穷大)上的减函数,且满足f(xy)=f(X)+f(Y) f(1/3)=1 求f(1)
- 已知函数f(x)在(0,+∞)上满足f(xy)=f(x)+f(y),且f(x)在定义域内是减函数. (1)求f(1)的值; (2)若f(2a-3)<0,试确定a的取值范围.
- 设函数f(x)在定义域(0,+∞)上为减函数,且f(xy)=f(x)+f(y).f(1/3)=1
- 现有两个旅游团,若分别购票,两个团共付门票1166元;如果两团合并购票共要880元.这两个团各有多少人?
- paint怎么读
- Jim no more went there改为同义句
猜你喜欢