∵函数f(x)=
log2x−1 |
log2x+1 |
又f(x)=1-
2 |
log2x+1 |
∴f(a)+f(2b)=2-2(
1 |
log22a |
1 |
log24b |
1 |
log22a |
1 |
log24b |
1 |
2 |
由(log22a+log24b)(
1 |
log22a |
1 |
log24b |
∴log2ab≥5,
而f(ab)=1-
2 |
log2ab+1 |
2 |
3 |
故f(x1x2)的最小值为
2 |
3 |
故选C
log2x−1 |
log2x+1 |
5−
| ||
4 |
4 |
5 |
2 |
3 |
3 |
5 |
log2x−1 |
log2x+1 |
2 |
log2x+1 |
1 |
log22a |
1 |
log24b |
1 |
log22a |
1 |
log24b |
1 |
2 |
1 |
log22a |
1 |
log24b |
2 |
log2ab+1 |
2 |
3 |
2 |
3 |