已知关于x的方程x^2-(t-2)x+t^2+3t+5=0有两个实数根,a向量=(-1,1,3),b向量=(1,0,-2),c向量=a+t
当|c|取最小值时,求t的值
修改c向量=a+tb
人气:431 ℃ 时间:2020-06-02 03:09:00
解答
根据方程有两实数根,△>=0,可以算出t的范围[-4,-4/3]
c=a+tb=(-1+t,1,3-2t)
|c|=√5t^2-14t+11
根据2次函数图像,知道y=5t^2-14t+11,顶点坐标(7/5,6/5)函数在(-∞,7/5]上递减,所以|c|取最小值时,t=-4/3
推荐
- 已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a•b=0至多有一个实根,则a与b的夹角的范围是 _ .
- 已知关于x的方程x²-(t-2)x+t²+3t+5=0有两个实数根,c→=a→+tb→,且a→=(-1,1,3),b→=(1,0,-2)
- 已知正实数x满足方程2*t的平方-t的平方x+2t(x+1)-x-x2=0,向量a(1,x),b(-3,2),c=a+tb,
- 已知IaI=2 IbI≠0,且关于x的方程x^2+IaIx+a*b=0有实数根,则a与b的夹角的取值范围 (ab都是向量)
- x=t+1 设直线方程为{y=2t-2 则该直线方向向量为(?) z=-3t+3
- 乳酸左氧氟沙星氯化钠对人体的副作用
- 鸟是树的花朵读后感
- 落在枝头的小鸟将树枝压弯,说明力的作用效果是_.
猜你喜欢