如图在菱形ABCD中,∠B=60°,点E,F分别在边AB,AD上,且AE=DF,(1)试判断△ECF的形状并证明
(2)AB=6,那么△ECF的周长是否存在最小值?如果存在,请求出来,如果不存在请说明理由.图应该可以画出来
人气:179 ℃ 时间:2019-08-22 19:13:57
解答
连接AC,
∵ABCD是菱形,
∴AB=BC=DC,∠B=∠D,
∵∠B=60°,∴ΔABC是等边三角形,∴
∴AC=BC=CD=AD,∴ΔACD是等边三角形,
∴ΔACE≌ΔDCF,∴CE=CF,
∴ΔCEF是等腰三角形.
⑵∵ΔACE≌ΔDCF,∴∠ACE=∠DCF,∴∠ECF=∠ACE+∠ACF=∠ACF+∠DCF=60°,
∴ΔCEF是等边三角形,
当CE最小时ΔCEF周长最小,
∴CE⊥AB,这时,CE=√3/2BC=√3/2AB=3√3,
∴ΔCEF周长最小=9√3.
推荐
- 菱形ABCD,E F是AB AD上点 AE=AF 证明CE= CF 若∠ECF=60°∠B=80°
- 如图 在菱形abcd中 ∠b=60°点e f分别在ab ad上 且be=af 你能说明△ecf是等边三角形吗?
- 如图,在菱形ABCD中,LB=60,点E、F分别在边AB、AD上,且AE=DF.
- 如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接DG.(1)求证:△AED
- “如图,菱形ABCD,∠B=60°,点E、F分别在AB、AD上,且BE=AF,那么△ECF是等边三角形吗?”
- 请你用Telephone or letter为题用英语写一篇短文
- 什么是词汇的语法意义?
- 目标函数Z=x+y在约束条件:X+Y
猜你喜欢
- 作文 我与书的故事600字就行,谢谢(不许重复)
- 英语中喜欢与不喜欢表达法有哪些 越多越好
- 设A为3阶矩阵,|A|=1/2,求|(2A)-1-5A*
- 请问:maintain,stay,keep,hold 的区别,谢谢!
- 一块木板长198分米、宽90分米,要锯成若干个正方形,而且没有剩余,最少可以锯成多少块?
- 体积是100立方厘米的金属块,重7.9N(1)它的密度是多少?是什么金属?(2)当它全部浸没在水中时,受到的浮力是多大>这时如果把铁块挂在弹簧秤上,弹簧的读数是多少?
- 课外文言文 三间茅屋,十里春风
- 心肌细胞的动作电位是什么