设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x))处的
切线斜率______.
人气:236 ℃ 时间:2019-08-15 10:51:16
解答
lim(x->0)[f(1)-f(1-x)]/2x=1
lim(x->0)[f(1)-f(1-x)]/x=2
即曲线在(1,f(1))处切线斜率为2
推荐
- 设f(x)为可导函数,且满足lim[4+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(,f(1))处的切线方程
- 设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
- 设f(x)为可导函数,且满足lim[f(1)+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
- 设f(x)为可导函数,且满足lim[f(1)-f(1-x)]/2x=-1,x趋于0,求曲线y=f(x)在点(1,f(1))处的斜率
- 设f(x)为可导函数且满足lim(f(a)-f(a-x))/(2x)=-1,x趋近0
- 春风和煦的诗句
- 甲、乙两人在同一条路上前进,甲每小时5km,乙每小时行7km,甲于中午12点时经过A地,乙于下午2点经过A地,
- x:8=0.2::1/2过程啊啊啊啊啊啊啊啊啊啊啊
猜你喜欢