> 数学 >
已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,则a的取值范围是______.
人气:106 ℃ 时间:2019-08-21 09:39:31
解答
由a2x2+ax-2=0,得(ax+2)(ax-1)=0,
显然a≠0,∴x=-
2
a
,或x=
1
a

∵x∈[-1,1],∴|-
2
a
|≤1或|
1
a
|≤1,∴|a|≥1.
只有一个实数x满足不等式x2+2ax+2a≤0,即抛物线y=x2+2ax+2a与x轴只有一个交点,
∴△=4a2-8a=0,∴a=0或a=2.
∴命题“p或q”为真命题时,|a|≥1或a=0.
∵命题“p或q”为假命题,
∴a的取值范围为{a|-1<a<0或0<a<1}.
故答案:-1<a<0或0<a<1.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版