> 数学 >
若三角形ABC的三个内角满足sin^2A=sin^2B+sinBsinC+sin^2C,则角A等于
人气:143 ℃ 时间:2020-02-15 08:49:28
解答
正弦定理:a/sinA=b/sinB=c/sinC=2R
所以,sinA=a/2R,同理,sinB=b/2R.sinC=c/2R
则题中的条件化简为,a^2=b^2+bc+c^2
余弦定理:a^2=b^2+c^2-2bc*cosA
所以,bc=-2bc*cosA
即cosA=-1/2
得A=120°
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版