已知f(x)是偶函数,且在(-无限大,0)上是减函数,试证明f(x)在(0,+无限大)上是增函数.
人气:491 ℃ 时间:2019-08-17 18:33:06
解答
for y > x > 0
=> -y < -x < 0
y= x+c where c >0
-y = -x-c
f(-y) = f(-x-c)
> f(-x)
f(y) > f(x) ( f is even )
f(x)在(0,+无限大)上是增函数
推荐
- 已知函数f(x)是偶函数,而且在(0,正无限大)上是减函数,判断fx在(负无穷大,0)上的单调性,并证明判断.
- 已知:偶函数f(x)在(0,+∞)上是增函数,判断f(x)在(-∞,0)上的单调性,并证明你的结论.
- 已知函f(x)是偶函数,而且在(0,+∞)上是增函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
- 已知函f(x)是偶函数,而且在(0,+∞)上是增函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
- 已知f(x)为偶函数,且f(x)在(0,+∞)上是减函数,证明f(x)在(-∞,0)上是增函数.
- 五环电阻棕、绿、黑、黑、棕怎么读?
- 国庆长假,大街上什么什么(写两个体现人多的成语)
- 有一桶油,油和桶共重52千克,倒出一半油后,这时连桶共重27千克,原来桶里有多少克油?如题 谢谢了
猜你喜欢