已知:偶函数f(x)在(0,+∞)上是增函数,判断f(x)在(-∞,0)上的单调性,并证明你的结论.
人气:250 ℃ 时间:2019-08-17 17:48:07
解答
因为偶函数在关于原点对称的区间上单调性相反;且f(x)在(0,+∞)上是增函数,故f(x)在(-∞,0)是减函数.证明如下:若-∞<x1<x2<0,那么0<-x2<-x1<+∞.由于偶函数在(0,+∞)上是增函数,故有:f(-...
推荐
- 已知函数f(x)是偶函数,而且在(0,正无限大)上是减函数,判断fx在(负无穷大,0)上的单调性,并证明判断.
- 已知:偶函数f(x)在(0,+∞)上是增函数,判断f(x)在(-∞,0)上的单调性,并证明你的结论.
- 已知函f(x)是偶函数,而且在(0,+∞)上是增函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
- 已知f(x)是偶函数,且在(-无限大,0)上是减函数,试证明f(x)在(0,+无限大)上是增函数.
- 已知函f(x)是偶函数,而且在(0,+∞)上是增函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
- 记忆是如何存在于我们的大脑之中的
- 我叫十万个为什么?
- 已知多项式a²+ba+5与7a²-5a-n的常数项相同,求n-n分之1的值
猜你喜欢