已知数列{an}是首项为a,且公比q不等于1的等比数列.Sn是前项的和,a1,2a7,3a4成等差数列.
<1>证明 12S3,S6.S12-S6成等差数列:
<2>Tn=a1+2a4+3a7+.+na3n-2
人气:214 ℃ 时间:2019-10-17 07:44:22
解答
基本思路:
由于数列{an}是等比数列,a1,2a7,3a4成等差数列.列出公式可以得到q的立方等于1或者-1/4.取消1得到q.把q和a看作是已知的定值,代入两个需要证明的数列中就可以得到需要计算的结果了.
推荐
- 已知数列an是首项为a 且公比q不等于一1的等比数列 sn是其前n项和 a1 2a7 3a4成等差数列
- 已知数列{An}是首项为a且公比q不等于1得等比数列,Sn是其前n项和,A1,2A7,3A4成等差数列.
- 已知数列{an}是首项a1=4,公比q不等于1的等比数列,Sn是其前n项和,且4a1,a5,-2a3成等差数列
- 已知数列{an}是首项a1=4,公比q≠1的等比数列,Sn是其前n项和,且4a1,a5,-2a3成等差数列. (1)求公比q的值; (2)求Tn=a2+a4+…+a2n的值.
- 已知数列{an}为等差数列,公差为d(d不等于0),a1=1 且a2 a5 a14依次成等比数列求an Sn
- 整数和小数的四则运算的计算方法: 整数 小数 加法和减法 乘法 除法
- 要求:1、整体思想
- 8个小朋友分6张饼,应如何切,才能使切的次数最少,并且每个小朋友分得的同样多呢?
猜你喜欢