已知二次函数f(x)=ax^2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1.
求(1)函数f(x)的解析式.
(2)设g(x)=f(-x)-mf(x)+1,若g(x)在[-1,1]上是减函数,求实数m的取值范围.
(3)设函数h(x)=log2[n-f(x)],若此函数在定义域范围内不存在零点,求实数n的取值范围.
第三小题?
人气:203 ℃ 时间:2019-08-22 19:01:35
解答
(1)f(-2)=f(0)=0∴可设f(x)=a(x+2)x,对称轴x=-1,顶点纵坐标是f(-1)=-a=-1,得a=1,∴f(x)=x²+2x,(2)g(x)=x²-2x-mx²-2mx+1=(1-m)x²-2(1+m)x+1当m=1时,g(x)=-4x+1,满足题意,当m>1时,需(1+m)/(1-m)...
推荐
- 已知二次函数f(x)=ax^2+bx+c(a.b.c属于R) f(-2)=f(0)=0 f(x)的最小值为-1
- 已知二次函数f(x)=ax^2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1.
- 已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1. (1)求函数f(x)的解析式; (2)设g(x)=f(-x)-mf(x)+1,若g(x)在[-1,1]上是减函数,求实数m
- 已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为( ) A.2 B.52 C.3 D.32
- 已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)的最小值为-1且满足f(-2)=f(0)=0.问:
- 氧气与二氧化碳在血液中的运输与特点
- 1928年奥运会结束后,国际足联召开代表会议,一致通过决议,举办四年一次的世界足球锦标赛.至今,总共举办过( )届的世界足球锦标赛.
- 直角坐标系中,以P(2,1)为圆心,r为半径的圆与坐标轴恰好有三个公共点,则r的值为_.
猜你喜欢
- 王奶奶用篱笆靠墙围了一个半圆形的鸡场.篱笆的全长为28.26米,鸡场的面积是多少平方米?
- 有一堆钢管共18层,上面第一层有5根,下面第一层都比上一层多一根,这堆钢管共有多少根?
- “澳大利亚是世界上唯一覆盖整个大陆的国家,从北到南距离为3220公里,从东到西3860公里,面积大体相当于
- 铁丝在氧气中燃烧的化学方程式可以读作
- 在100克盐水中,盐与水的比是1:9,那么盐水中水的质量是?甲乙两数的比是5比4,如果甲数是40,则乙数是?
- 巧连数中的破麦剖梨是什么意思?
- 习题19.2 1——3题答案
- 在一条长2500米的公路两侧架设电线杆,每隔50米架一根(两端都架设).