2.直线l1:ax-2y=2a-4,l2:2x+a²y=2a²+4,当0<a小于2时,两直线与坐标轴围成四边形,面积最小
是求l1 l2
不好意思~
人气:120 ℃ 时间:2020-03-19 22:19:29
解答
解 直线l1:ax-2y=2a-4与两轴的交点为(0,2-a),(2-4/a,0),直线l2:2x+a²y=2a²+4与两轴的交点为(0,2+4/a²),(a²+2,0),直线l1与直线l2的交点为(2,2).
因此,四边形的面积S=(1/2)(a²+2)(2+4/a²)-(1/2)[(2+4/a²)-(2-a)]*2
=a²-a+4
=(a-1/2)²+15/4.
因此,当a=1/2时,四边形的面积取得最小值15/4.
注:用不同的割补方法,四边形的面积的表达式也可以写为
S=(1/2)[(a²+2)-(2-4/a)]*2-(1/2)(4/a-2)(2-a).
推荐
- .已知a∈(0,2),直线l1:ax-2y-2a+4=0和直线l2:2x+a^2*y-2a^2-y-2=0与两坐标轴围成一个四边形,求此四边形的
- 已知实数A满足0小于A小于2,直线L1:AX-2Y-2A+4=0和L2:2X+A*AY-2A*A-4=0与两坐标轴围成一个四边形
- 已知a属于(0,2),直线L1;ax-2y-a+4=0和直线L2;2x+a*ay-2a*a-y-2=0与坐标轴围成四边形求面积最小时a值
- 已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4(0
- 已知a∈(0,2),直线l1:ax-2y-2a+4=0和直线l2:2x+a^y-2a^-y-2=0与两坐标轴围成一个四边形,求此四边形的面积
- 英语翻译
- 直线L1:Y=-4X+5和直线L2:Y=1/2X-4,求这两条直线L1和L2的交点坐标?
- punish的汉语意思
猜你喜欢