(急)多元函数微积分证明题
设函数u=f(x,y,z),x=rsinψcosθ,y=rsinψsinθ,z=rcosψ,其中f具有连续偏导数,证明:
1.如果xdu/dx+ydu/dy+zdu/dz=0,则u仅是ψ和θ的函数;
2.如果(du/dx)/x=(du/dy)y=(du/dz)/z,则u仅是r的函数、
偏导符号打不出来,用d代替.
人气:418 ℃ 时间:2020-02-05 18:46:28
解答
1.du/dr = du/dx * dx/dr + du/dy * dy/dr + du/dz * dz/dr= du/dx sinψcosθ + du/dy sinψsinθ + du/dz cosψ= 1/r [xdu/dx + ydu/dy +zdu/dz) =0所以u与r无关,只是ψ和θ的函数2.同理,du/dθ = du/dx dx/dθ + ...
推荐
猜你喜欢
- 求极限lim√[(n²+n)-n],n趋向于无穷.
- 炒黄金白银赚了很多钱,怎么形容?大气一点的词语
- progress in &make progress with的区别?
- 一吨煤12吨,第一天运走总数的3分之1,第二天运走总数的4分之1,两天共运多少吨?
- how often do you exercise用英语怎么说
- 鸡兔共有脚44只,若将鸡数与兔数互换,则共有脚76只,鸡和兔各有多少只?
- there will be more books in our school library 一般疑问句
- 他坐在黑板前面,我坐在教室后排. He sits _____ _____ _____ the blackboard, I sit in the back row.