证明如下:
∵f(x)=
x2+ax+a |
x |
a |
x |
|
x∈[1,+∞)且a<1,
∴f(x)在[1,+∞)上为增函数.
(2)由(1)知f(x)在[1,+∞)上为增函数,
m满足f(3m)>f(5-2m),
∴
|
解得1<m≤2.
(3)设g(x)=x2+ax+a,由g(x)+2x+
3 |
2 |
得:x2+a(x+1)+2x+
3 |
2 |
即a(x+1)>-(x+1)2-
1 |
2 |
∵x∈[2,5],∴x+1∈[3,6],
∴①式可转化为a>-(x+1)-
1 |
2(x+1) |
∴题目等价于a>-(x+1)-
1 |
2(x+1) |
即a大于函数y=-(x+1)-
1 |
2(x+1) |
即求y=(x+1)+
1 |
2(x+1) |
令t=x+1,t∈[3,6],
则y=t+
1 |
2t |
1 |
2t |
所以最小值为
19 |
6 |
19 |
6 |