(1)原式=1-12+
12-13+13-14+14-15+15-16=1-16=56;
(2)原式=1-12+
12-13+13-14+14-15+…+1n-1n+1=1-1n+1=nn+1;
(3)11×3+
13×5+
15×7+…+
1(2n-1)(2n+1)
=12(1-
13)+
12(
13-
15)+
12(
15-
17)+…+12(
12n-1-
12n+1)
=12(1-
12n+1)=n2n+1
由n2n+1=1735,解得n=17,
经检验n=17是方程的根,
∴n=17.