假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f(x)恒=0
请写证明过程
人气:190 ℃ 时间:2020-04-12 21:39:37
解答
初学数学吗?
很明显在考你拉格朗日中值定理.
定积分b到a f(x)dx=0=(a-b)f(t)
t(b,a)
a不等于b,f(t)=0
所以在(a,b)上
恒有f(x)恒=0
推荐
- 定积分证明题:f(x)在闭区间a到b上连续,求证:,∫b到a f(x)dx=,∫b到a f(a+b-x)dx
- 若不定积分∫f(x)dx=x㏑x C,则被积函数f(x)等于多少
- 设f﹙x﹚为[-a,a]上的连续函数,则定积分∫﹙-a到a﹚f﹙-x﹚dx=_____
- 证明f(x)^2的定积分大于等于f(x)的定积分的平方
- 设函数f(x)=e^2x,则不定积分 ∫f'(x)dx等于 求详解 ,
- 观察2,-4,6,-8,10,-12,14,这组数观察规律答出第99,100个数
- 一花一世界,一木一浮生,一方一净土,
- 如图,二次函数y=2/3x²-1/3x,图像过△ABC三个顶点,其中A{-1,m},B{n,n}
猜你喜欢