已知:如图,AB为圆O的直径,点E是OA上任意一点,过点E作弦CD⊥AB,点F是BC弧上一点,链接AF交CE与点H,联结AC CF BD OD
(1)求证△ACH相似于△AFC
(2)猜想AH×AF与AE×AB的数量关系并证明猜想.
(3)探究:当点E位于何处时,S△AEC:S△BOD=1:并加以说明
人气:102 ℃ 时间:2019-08-21 03:09:08
解答
(1)
∵OA过圆心且CD⊥AB
∴弧AC=弧AD
∴∠F=∠ACD
又∵∠CAF=∠CAF
∴△ACH∽△AFC
(2)
连接BC
∵AD为直径
∴∠ACB=90°
又∵CE⊥AB
∴AE×AB=AC²
∵△ACH∽△AFC
∴AC/AH=AF/AC
∴AC²=AH×AF
∴AH×AF=AE×AB
(3)
S△AEC=1/2AE×CE
S△ODE=1/2OE×OD
S△OBD=1/2BO×DE
∴S△AEC:S△BOD=AE:BO=1:4
∴当AE=1/8AB时
S△AEC:S△BOD=1:4
推荐
- 如图,在圆O中,直径AB=4,点E是OA中任一点,过E作弦CD垂直AB,点F是弧BC一点,链接AF交CE与点H,
- 如图,已知,在圆O中,直径AB=4,点E是OA上任意一点,过E作弦CD垂直AB
- 已知:如图,AB为圆O的直径,点E是OA上任意一点,过点E作弦CD⊥AB,点F是BC弧上一点,链接AF交CE与点H,联结AC
- 如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
- 如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.求证:△OEF是等腰三角形.
- 请问count up to around
- 求解一道英文的求矩阵的题
- 氧化物一定是氧元素与另一种元素组成的化合物吗?
猜你喜欢
- 直三棱柱abc—a1b1c1中,ab垂直于ac,d、e分别为aa1、b1c的中点,de垂直于平面bcc1,问1:证明AB=AC
- 某数除以8余2,除以10余4,除以12余10,这个数最小是多少?
- 六(1)班有男生20人,女生占全班人数的九分之五,六(1)班有多少人?
- 如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB的中点,AE=CF.求证:DE⊥DF.
- 一个正方体的棱长是3分之2米,它的表面积和体积分别是多少
- 电脑网络就像一张遍布全球的巨大蜘蛛网,把每一个地方都连接到一起.(仿写比喻句)急需!
- "静电场的电场线起于正电荷终止于负电荷,或从无穷远到无穷远"这种说法对么?为什么?
- 写游记的提纲