如图,已知,在圆O中,直径AB=4,点E是OA上任意一点,过E作弦CD垂直AB
人气:457 ℃ 时间:2019-09-03 10:29:42
解答
(1)
∵OA过圆心且CD⊥AB
∴弧AC=弧AD
∴∠F=∠ACD
又∵∠CAF=∠CAF
∴△ACH∽△AFC
(2)
连接BC
∵AD为直径
∴∠ACB=90°
又∵CE⊥AB
∴AE×AB=AC²
∵△ACH∽△AFC
∴AC/AH=AF/AC
∴AC²=AH×AF
∴AH×AF=AE×AB
(3)
S△AEC=1/2AE×CE
S△ODE=1/2OE×OD
S△OBD=1/2BO×DE
∴S△AEC:S△BOD=AE:BO=1:4
∴当AE=1/8AB时
S△AEC:S△BOD=1:4
推荐
- 已知:如图,AB为圆O的直径,点E是OA上任意一点,过点E作弦CD⊥AB,点F是BC弧上一点,链接AF交CE与点H,联结AC CF BD OD
- 已知:如图,AB为圆O的直径,点E是OA上任意一点,过点E作弦CD⊥AB,点F是BC弧上一点,链接AF交CE与点H,联结AC
- 如图,在圆O中,直径AB=4,点E是OA中任一点,过E作弦CD垂直AB,点F是弧BC一点,链接AF交CE与点H,
- 如图,在⊙O中,AB为弦,C为弧AB的中点,OC交AB于D,AB=6cm,CD=1cm,求⊙O的半径OA.
- 如图,已知圆O与圆O'相交于A、B两点,点O在圆O'上,圆O'的弦OC交AB于点D.(1)求证:OA^2=OC*CD; (2)如果A
- 80.B3N3H6,因其结构和性质均与苯(C6H6)相似,故称无机苯.下列关于无机苯的说法正确的是( )
- 圆柱体积与长方形、正方形体积的联系
- 0.63+0.37÷ (2+3/2+1+9/4)
猜你喜欢