> 数学 >
证明(1-tana)[1-tan(3π/4-a)]
抱歉弄错了,是化简(1-tana)[1-tan(3π/4-a)]
人气:161 ℃ 时间:2020-06-11 22:38:31
解答
(1-tanα)[1-tan(3π/4-α)]
= (1-tanα)[1-(tan3π/4-tanα)/(1+tan3π/4tanα)]
= (1-tanα)[1-(-1-tanα)/(1-tanα)]
= 1-tanα-(-1-tanα)
= 1-tanα+1+tanα)
= 2
【附:两角差公式 tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)】
tan3π/4= -1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版