交换累次积分的次序∫[0,1]dx∫[0,1-x]f(x,y)dy
过程讲明原因
人气:210 ℃ 时间:2019-11-19 08:29:06
解答
这是直线x + y = 1与两个坐标轴围成的区域.
而且积分域是关于y = x对称的,所以将x和y对调就可.
∫(0→1) dx ∫(0→1 - x) f(x,y) dy
= ∫(0→1) dy ∫(0→1 - y) f(x,y) dx
推荐
- 交换积分次序:∫(0,1/2)dx∫(x,1-x)f(x,y)dy=
- 交换积分次序∫(1,0)dx∫(x,0)f(x,y)dy+∫(2,1)dx∫(2-x,0)f(x,y)dy
- 交换累次积分的次序∫ dy∫ f(x,y)dx ,第一个上下限是1,0 第二个是y,0
- ∫[0,1] dx∫[-x^2,1] f(x,y)dy交换积分次序
- 交换积分顺序后∫(0→1)dy∫(y→√y)f(x,y)dx=?
- 超市为促销,肥皂买一块收3.8元,买3块共收8.7元;买5块共收14元,买16块至少要付( )元
- 高中必修四的一道数学题
- 中国第1枚火箭在几年级月几日
猜你喜欢